platinum wire in an electro-thermographic cell, i.e. under the
conditions, where the high degree of uniformality of the external
parameter fields jis ensured.. The structure arises as a result of
disintegration of a uniform mode in the deep diffusion region; in this
case the domain is overheated to temperatures exceeding significantly
those in the diffusion region, which were treated in the classical
kinetics as the maximum possible.
The same paper describes various self-oscillatory, spatially nonuni-
form regimes in ethylene oxidation in the catalytic cell of an
electro-thermograph. The oscillatory process shows itself up as a
Pulsatory change in the location of the boundaries demarcating the
zones of the hot and cold domain. The researcher, who is unaware of
the possibility of stratification of the process and observes oscilla-—
tions by the integral signal, would traditionally describe these
phenomena in terms of homogeneous moels, which would, obviously, have
no relation to the actual kinetics. The kinetic studies on heteroge-
neous catalysis quote a great many of examples of an oscillatory
instability in the conversion regimes being interpreted in terms of
homogeneous models, but none of them contains an analysis of the
spatial patterns of these phenomena.
The paper (VOLODIN, BARELKO, 1983) presents data on stratification in
conversion processes due to factors of electrochemical nature. These
phenomena are most typical of the kinetic measurements using as
sensitive elements incandescent filaments and should be taken into
consideration in their interpreting. As known, such sensitive elements
are widely used in the cells of the kinetic devices intended for
studying various catalytic and adsorption—-desorption processes.
Unfortunately, at this stage the kinetics of heterogeneous
catalytic reactions as a whole remains within the limits of the
classical approach operating with homogeneous schemes and models. The
studies aimed t working cut new apparats of the kinetic theory and new
experimental approaches in investigating the kinetic features of
chemical conversions with due regard to the transfer factors are still
few. It may be stated that in this respect the chemical kinetics is
far behind the physical kinetics that is greatly involved in studying
self-organization phenomena in various systems, such as plasma,

semiconductors, biologically active media and other fields.
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NON-STATIONARY NUC. "% iON AND THE
JOHNSON—MEHL -AVRAMI EQUATION

J. BARTELS, J. SCHMELZER, F. SCHWEITZER
Wilhelm—Pieck-Universitit Rostock, Sektion Physik,
Universitatsplatz 3, Rostock, DDR - 2500, GDR

1. Introduction

Phase transitions frequently proceed via the formation and growth of

clusters of a newly evolving phase in the initially metastable

homogeneous medium.

In the interpretation of experimental investigations of such processes

often the classical nucleation theory is used (BECKER, DORING, 1935;

AVRAMI, 1939, 1940, 1941; FRENKEL, 1946; GIBES, 1906; ZELDOVICH, 1943;.

VOLMER, WEBER, 1926). This theory contains a number of restrictive

assumptions like the following: ) .

- The microscopic structure of the clusters is identical to the
structure of the stable phase in macroscopic dimensions

- The specific surface energy of the cluster in the medium is equal
to the value n011wmvo:nw:a to a planar interface between .both
phases (and is only slightly temperature dependent?

- The clusters are of spherical shape

- The evolution of the cluster distribution is the result mainly of
reactions between clusters and monomers

- The contribution to the energy of cluster formation due to
translational and rotational degrees of freedom is negligible

- The thermodynamic constraints and the supersaturation are kept
constant in the course of nucleation resulting after some time-lag
% in the establishment of a steady-state nucleation rate 1.,

In experimental investigations in many cases as a first step not the

cluster distribution but the volume fraction x of the newly eavolving

phase is measured as a function of time. The application of the

classical nucleation theory leads to the following expression for x(t)

(AVRAMI, 1939, 1940, 1941; JOHNSON, MEHL, 1930)

=
xstu».. mxu*l 3 Hnmunaw 1)

EQ. (1) is usually denoted as Johnson-Mehl-Avrami equation (JMA).

To be definite, here the crystallization in melts is considered.
The growth rate of the clusters is denoted by g, it is assumed to be
limited by reactions at the surface of the cluster (reaction 1limited
qarowth) .
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1f both the nucleation rate I and the growth rate qQ are time-dependent
due to time-lag effects, to time-varying constraints or variations of
the state of the medium in the coursée of the transition, then x(t) has

to be calculated from a generalized JMA-equation (CHRISTIAN, 1975)

4n Pt t 3
g{t")rdt" dt -’ 2>

x(t) =1 -~ expy—- — | I(t")

3 Jo t-
In the present paper the influence of a time dependence of the
nucieation rate on x(t) is analyzed which is due to time-lag effects
and to well-defined variations of the temperature in the course of the
transition. The non-steady character of the nucleation process
implies, that the classical steady-state nucleation rate cannot be
applied. It is replaced here by a kinetic approach described in
chapters 2 and 3. In chapter 4 eq.(2) is applied to the calculation of
time-temperature-transformation (TTT)-diagrams for a isoconcentration
crystallization of a metallic melt. The results are compared with the

curves obtained on the basis of the classical nucleation theory.

2. Kinetic Model and Mathematical Description

Neglecting possible spatial inhomogeneities the course of the phase
transition may be described via the distribution function with respect
to cluster sizes N(j,t) in dependence on time. In accordance with the
assumptions wunderlying the classical nucleation theory the evolution
of this distribution is determined by addition or evaporation of
monomers. Moreover, homogeneous nucleation is assumed.

Processes of heat conduction are ®xpected to proceed rapidly
noamm1mu with the characteristic growth rates of the clusters. As a
consequence at each moment a well-defined value of the temperature can
be attributed to the system.

Based on these assumptions the following system of rate equations may

be formulated for the description of the time evolution of the cluster
size distribution N(j,t)

d
— NGj,t) = I(ji-1,t> - I(j,t) . 3
dt

with
TG, = w(j,tINCj,t) - WTi+T,EINCI+HL ) L ) (4)

In a system with conservation of the particle number the actual number

of monomers is calculated from
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NCL,t) = NC1,00 = E NG5, E) -5 5)

wo{j) and w (j) are the transition rates of clusters with size j in
clusters with size (j+1) and size (j=1), respectively. It means that
they are the rates of attachment or detachment of a single particle.
It should be mentioned, that I(j.,.) corresponds to the nucleation rate
in the classical nucleation theory. The critical cluster size jo,- is
defined by wW*(jo, ) = w-(j..).

The application of the system of rate equations to a special system
takes place by Ffixing the initial and boundary conditions and
determining the kinetic coefficients w* and w-. In most cases it is
easier to find a expression for w* than for w— because the decay of a
cluster arises from internal processes. That is the reason for that
usually the principle of detailed balance is applied to calculate w—

from a known w* and from the equilibrium distribution Ne(j). With

aGj) o
Ne(j) = N(1) ex -
7 P kT
we obtain
AG(i)~AG(j~1)
wWT(j) = we(j-1) exp 73

kT

k is Boltzmanns constant and aG(j) is the change of Gibbs free energy
in the system caused by the formation of a cluster of size j. In the

classical nucleation theory a6 is expressed by a volume and a surface

contribution:
AG(J) = Aag-j + A(J) o (8>

A(j) is the surface area of the cluster and proportional to jz/=, ag
is the difference of Gibbs free m:m1a<.um1 particle between initial
phase and newly evolving bulk cluster phase. g is the surface tension
and is regarded as size independent. The determination of the
thermodynamic driving force ag of the phase transition for different
situations is carried out in UN1V@1WUJ 3.

The rate of attachment of monomers to clusters of size j can be
determined both for diffusion limited and reaction limited growth. In
the first case one obtains from the 1. Fickian law under the
assumption of a stationary concentration profile of segregating
particles

WT(J) = (4Bn=/co)r1/S D, - jLo= (%)
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while for reaction limited growth the following expression holds
(KELTON et al., 1983)
D
WY (j) = 24 — j2/3 10>
A= .
Cxy €1" in eq.(%) are concentration of segregating particles and of
monomers sufficiently away from the cluster, D is the diffusion

coefficient of the particles in the medium.

The basic mechanism, resulting in eq. (10), activated

is a thermally
jump from matrix to cluster phase at the surface of the cluster with a

characteristic length A.

The temperature dependence of D is given by a Vogel-Fulcher expression

Ep
D = Do mng|'||.W (11)

k(T-Ty>

Ex is the activation energy for a diffusioen jump and To is an

empirical lower limiting temperature.

In order to solve the system of rate equations (eqs.(3) to

KELTON et al.

(S5

numerically {1983)

a simulation technique suggested by

was used. They use the boundary condition

N(j,t) =0 , 5 > )= (12)

where j* is the largest cluster size for which N(j,t) is calculated

from a rate equation.

J* is equal to the number of equations of the

system and 1limited by the computer time. The growth of clusters,

consisting of more than j* particles is described by a growth equation
of the general form

gli) = wr(3) - w(j) .

13
The 1nitial distribution is given by
N¢(j,0) =0 , i > 1 14)
N(1,0) = N, . (15
If a quench of a melt from melting temperature T, to room temperature

is considered, the simulation starts somewhat below of T since at Ta

the critical cluster size diverges. In this case the stationary

distribution belonging to this temperature is used as the Mawﬁwmu

distribution.

3. The Thermodynamic Driving Force of the Transition

The determination of the evaporation rates requires the knowledge of

the thermodynamic driving force ag of the phase transition. For a

S0

crystallization process with polymorphic transition under a constant
pressure p the driving force is determined by the degree of undercoo-
ling AT=Tn-T, where T. is the melting (crystallization) temperature

and T<T. the actual value of the temperature. In this case the

difference of the Gibbs free energy per particle ag in the solid and
liquid phases,

respectively, can be expressed through the difference

of the molar entropies AS and the Avogadro number Na via

1 T
Ag(T) = — == % aS(T*>dT" - (16)
Na Ten
A Taylor expansion of aS(T) yields
aT ACa (T ColT. ’
ag(Ty = = 2 1 - 2e + 88T T 17>
NaTn 245(T.) 2a5(T,) Ten

g is the molar heat of the transition (g>0) and aC, the difference of
the heat capacities in both considered phases.

For metallic melts often the relation (AC./aS) =~ 1 is qum1»3m:ﬁwpw<
to be fulfilled (GUTZOW, PENKOW, 1987). 1In this

found approximation

eq. (17) is reduced to

q aT AT
Ag(T) = = = ¢ == — . 18>
Nog T, 2T.
A very suitable method to give a clear idea of the temperature

dependence of the kinetics of a liquid/solid transition is a TTT-

(time~temperature—-transformation) curve. Fig. 1 shows a calculated
TTT-curve of AuacSizo for x=10"%, ‘The points of the curve correspond
to the time after which at nOJWﬁmiﬂ temperature a volume fraction of
10-e differ

description of

is transformed into the new phase. The curves in Fig. 1

from each Oﬂsmﬂv in nmum:nm:nw on their level of

nucleation. If nucleation is described by the classical
(BECKER, DURING, 1935;

CHRISTIAN, 1975; KASHCHIEV, 1%69)

ag  \HZ : NI
Ie = W"(jar) * Nscoxp | -

steady—-state

nucleation rate AVRAMI, 1939, 1940, p@bn“

1)
6k T i kT

{(dashed curve in Fig. 1) and if additiomally the volume of the

critical nuclei is taken into account in the uznlmnCWﬂ»mJ
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x(t) = 1-exp - = Ta t0g¥¢t™ + 4ro,.= + 6r..= gt + 4ro,. g2t=]

3 A

g

1-exp %..,m Ig L4273y + aﬁuw <20)

one obtains a new maximum in the TTT-curve (dashed-dotted curve).

500

>Cmommwo

T [x3

t [s]

Fi 1:

__m|UHOﬂ for nuﬁﬁm1m:ﬁ approximation levels of the JMA-equation
EgQ. (1) (- - - N n (20) A|.n.|.|v

eq. (2) A.......v .21y

Parameters following Kmrqoz m EER (19857

This maximum is located at the same temperature as the maximum of the
stationary nucleation rate obtained from eq. (19) (see Fig. 2).
The additional maximum occures only at high nucleation rates like

those observed during crystallization in metallic melts. Taking into

account additionally to the volume of the critical nuclei the

existence of a non-stationary transient phase for nucleation one

obtains another curve (full line in Fig. 1) wusing the numerically

calcdlated rate I(j..,t) and the generalized form of the JMA equation

an ft 3
x{t) = 1-exp I.Ml I(t") | re- + , adtrrden dt”’ (21)
° .
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emper ature dependence of the stationary nucleation rate Ig and the
deterministic growth velocity g
Parameters see Fig. 1.
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lv ot from the w3u1o<oa uZDIOnCDquD Amuu using numerically
lated non-stati 03&1« nucleation rates
Cristalline volume fraction x=10-%, C(Cristalline phase consists of all

JcnwmwiuWIUVun1AnC1<mnv01:uﬂz 3>300 wich is assumed to be the
lowest detectable cluster size (curve b} (Ler=je,)

calcu-

It can be that both additional effects -~

seen arising from the

consideration

of the volume of the critical nuclei and.from time-lag
in nucleation -~ compensate each other to a large extent.
The reason for this compensation is the increasing with decrea-

sing temperature time-lag in nucleation rate caused by the decreasing

53




particle mobility which is proportional to exp{~Ex/kT}. This is the

reason why the high stationary nucleation rates at 1ow temperatures do
not have a significant effect and the contribution of the
volume,

new phase
transformed with this rate is less important. A

coincidence arises with the

(1) {dashed

surprising
"classical"” TTT-curves calculated from eq.
line in Fig. 1). Fig. 1 illustrates the cause of this
coincidence. In Fig. 3 both TTT-curves demonstrate a

further, more

effect of non-stationary behaviour. The original JMA-theory
overcritical

practical,

adds all clusters to the new phase. In

experimentally only clusters larger than a certain,

contrast,

fixed, size, the
resolution limit of the experimental device, are registrated. Nor-
mally, this cluster size is larger than the critical size.

However,
the 1length of the time—lag in stationary nucleation rate is
dependent on the size of the considered nuclei

If x(t)

strongly
(KELTON, GREER, 1985).

is obtained from the improved JMA-equation (21) using the

numerically calculated nucleation rate of a larger, fixed cluster size

{(in this case I(t,3=300)), the TTT-curve is clearly shifted to the

right compared with the curve calculated with I(t,j=jc~). This effect

increases that means with a

with a decreasing temperature, growing
influence of the time-lag. This has to be taken into account in the

analysis of measurements with the help of the JMA-theory in order to

obtain correct kinetic parameters of the process.
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Fig. 4:
on-—-s mﬁ»osmww nqﬂqluHOA (a) compared with stationary (b) and non-

stationary (c T-plot for DCtomMMMvw:a x=10—%

The dotted lines are the linear T —curves of the critical

rates. Parameters see Fig. 1. quenching

If, in a further step, we want to investigate x(t) during the

‘sS4

i
¥

quench of a melt from Ts to room temperature,
and g become time-dependent because of their

we have to note that 1
temperature

(Fig. 2) and only eq.(21) enables a correct description. To
the crystallization

dependence

describe
behaviour one changes over from the isothermal
TTT-curve to a CCT (continuous—-cooling-transformation)-curve for a
linear cooling law. The CCT-curve breaks off at a critical quench rate

Tery by which a crystalline volume fraction x=10—% jg frozen in. That

means Te- is the minimum quench rate to get a glassy state, following
the criterion of UHLMANN (1972). Fig. 4 shows the numerically calcula-—

ted TTT-curve for AuaocSize (curve a), the CCT-curve from the tempera-

dependent stationary nucleation rate (b) and the CCT-curve
the numerically

ture from

calculated nucleation rate (c) and the pertinent

critical quench rates. At high T the nucleation rate does not reach

the stationary value corresponding to the actual system temperature
(19) (KELTON, 1986; RICHTER et al., 1987). The reason

the development of the cluster

according to eq.

is that distribution

proceeds over
matter transport processes. But these transport processes are too slow
with the

distribution

compared temperature change to establish the

corraesponding to the actual temperature at

stationary

each time.

Caused by the reduced nucleation which is obtained if non—stationary

effects are considered, less volume is crystallized at room tempera-—

ture than we would have expected on the basis of the classical
stationary nucleation rate. The non—-stationary CCT-curve breaks off at
lower T than the stationary one, so that T.,. decreases by a factor of
10. All this follows from the

restrictive assumption in paragraph one.

the order

abolition of the last

S. Summary

The variation of thermodynamic constraints during crystallization of a

melt leads to some new effects which cannot be described by classical

nucleation theory. The solution of the system of rate equations for

the evolution of the cluster

size distribution with parameters

corresponding to special representative systems results in the follow-
ing differences to classical nucleation theory:

1. Isothermal TTT-curves for metallic melts calculated from the JMA-
equation show a significant shift at lower temperatures if the non-
stationary initial phase or the volume contribution of critical
nuclei to the new phase is taken into account. Both shifts
compensate each other partially.

2. An  interpretation of experimental x{(t)- or TTT-curves has to take
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into consideration that only nuclei larger than the resolution

limit contribute to the transformed volume fraction which is

measured and not as assumed inh classical nucleation theory all

nuclei larger than the critical size. The cluster-size-dependent

time—lag in nucleation rate shifts the TTT-curve to
larger times.

significant

During rapid quenching of a melt the nucleation rate cannot reach

the stationary value corresponding to the actual temperature of the

system. After quenching less nuclei are frozen in as this would

follow from the classical theory. This leads to a considerable

reduction of the critical quench rate in metallic melts.

RANDOM WALKS ON FRACTALS

C. VAN DEN BROECK
Center for Statistical Mechanics, The University of Texas at Austin
Austin, Texas 78712
Parmanent address: L.U.C. B-3610 Diepenbeck, Belgium

1. Introduction

In recent years, there has been an increasing interest in the study of
systems with fractal time or space properties {(for a recent review,
see HAVLIN, BEN-AVRAHAM, 1987). One of the rsasons for this interest
is that systems with disorder possess the dilatation symmetry charac—
teristic for fractals. A famous example is the percolating cluster.
One can thus hope that a study of fractal systems will lead to a
better or new understanding of systems with disorder. The fractals
that arise in this and other contexts {(such as in diffusion limited
aggregation, porous media, mﬂn.v are usually random fractals, and an
analytic study is very difficult. However, some progress can be made
when one restricts oneself to the study of deterministic fractals,
which one can try to construct such as to mimic as closely as possible .
the more complicated random fractals.

Here, we will investigate a basic dynamical property on simply
connected deterministic fractals, namely the first passage time to go
from the point at the origin to one of the sites 1lying at large
distance from this peoint. As far as we know, all the previous exact
dynamical results deal with moments of some quantity (usually the mean
square displacement) whereas the technique presented here allows the
calculation of a probability density, namely the first passage time
density.

One ingredient of our technique is nzm derivation of a renormalization
equation in the same way as was done by MACHTA (1981) for a random
walk in one dimension. The second ingredient is the introduction of an
auxiliary function f, defined in a unique way as the solution of a

functional equation of the following type:
p{fix)) = f(ax) FCO) = §°¢0) = 1 (1)

The detailed form of p depends on the (site and bond) geometry of the
fractal under consideration. Using the function f, one can reduce the
renormalization equation to a simple form which can be solved by
iteration. It is also hoped ﬂrwn.nrm introduction of such an auxiliary

function may be useful to solve renormalization equations arising in
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